Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

نویسندگان

  • Ehsan Motamedian Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran. Drug Design and Bioinformatics Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
  • Ghazaleh Ghavami Drug Design and Bioinformatics Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. Eastern Mediterranean Health Genomics and Biotechnology Network (EMGEN), Tehran, Iran
  • Soroush Sardari Drug Design and Bioinformatics Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
چکیده مقاله:

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of cisplatin resistant and sensitive A2780 epithelial ovarian cancer cells and normal ovarian epithelium has been studied using a generic human genome-scale metabolic model and transcription data. Result:The results demonstrate that the most different metabolisms belong to resistant and normal models, and the different reactions are involved in various metabolic pathways. However, large portion of distinct reactions are related to extracellular transport for three cell lines. Capability of metabolic models to secrete lactate was investigated to find the origin of Warburg effect. Computational results introduced SLC25A10 gene, which encodes mitochondrial dicarboxylate transporter involved in exchanging of small metabolites across the mitochondrial membrane that may play key role in high growing capacity of sensitive and resistant cancer cells. The metabolic models were also used to find single and combinatorial targets that reduce the cancer cells growth. Effect of proposed target genes on growth and oxidative phosphorylation of normal cells were determined to estimate drug side-effects. Conclusion: The deletion results showed that although the cisplatin did not cause resistant cancer cells death, but it shifts the cancer cells to a more vulnerable metabolism

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

objective(s): many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. material and methods:metabolism of c...

متن کامل

Generation of Cisplatin-Resistant Ovarian Cancer Cell Lines

Ovarian cancer is the most lethal gynecological cancer in which cisplatin-based treatment plays fundamental role as the first line chemotherapy option. However, development of platinum-resistance is a critical and poorly understood problem in ovarian cancer treatment. Although in vitro generation of platinum-resistant ovarian cancer cell lines is a long established approach to uncover the molec...

متن کامل

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

A curated genome-scale metabolic model of Bordetella pertussis metabolism

The Gram-negative bacterium Bordetella pertussis is the causative agent of whooping cough, a serious respiratory infection causing hundreds of thousands of deaths annually worldwide. There are effective vaccines, but their production requires growing large quantities of B. pertussis. Unfortunately, B. pertussis has relatively slow growth in culture, with low biomass yields and variable growth c...

متن کامل

Modeling cancer metabolism on a genome scale

Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 18  شماره 3

صفحات  267- 276

تاریخ انتشار 2015-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023